Accelerating isogeometric boundary element analysis for 3-dimensional elastostatics problems through black-box fast multipole method with proper generalized decomposition
نویسندگان
چکیده
منابع مشابه
A fast multipole boundary element method for 2D viscoelastic problems
A fast multipole formulation for 2D linear viscoelastic problems is presented in this paper by incorporating the elastic–viscoelastic correspondence principle. Systems of multipole expansion equations are formed and solved analytically in Laplace transform domain. Three commonly used viscoelastic models are introduced to characterize the time-dependent behavior of the materials. Since the trans...
متن کاملFast Multipole Boundary Element Method of Potential Problems
In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale potential problems, a fast multipole boundary element method for the problems of Laplace equation is presented. through the multipole expansion and local expansion for the basic solution of the kernel function of the Laplace equati...
متن کاملThe black-box fast multipole method
Article history: Received 31 March 2009 Received in revised form 17 August 2009 Accepted 26 August 2009 Available online 6 September 2009
متن کاملAn adaptive fast multipole boundary element method for three-dimensional potential problems
An adaptive fast multipole boundary element method (FMBEM) for general three-dimensional (3-D) potential problems is presented in this paper. This adaptive FMBEM uses an adaptive tree structure that can balance the multipole to local translations (M2L) and the direct evaluations of the near-field integrals, and thus can reduce the number of the more costly direct evaluations. Furthermore, the c...
متن کاملAdaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems
A new adaptive fast multipole boundary element method (BEM) for solving 3-D half-space acoustic wave problems is presented in this paper. The half-space Green’s function is employed explicitly in the boundary integral equation (BIE) formulation so that a tree structure of the boundary elements only for the boundaries of the real domain need to be applied, instead of using a tree structure that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Engineering
سال: 2018
ISSN: 0029-5981
DOI: 10.1002/nme.5773